Abstract: Conducting polymers can sense gases, however, it is mostly the dopant that dictates which ones: Here we show that a single conducting polymer discriminates gas-phase water, from ethanol, from acetone, on demand, by varying the nature of its dopant. Seven triflate salts are evaluated as mild to strong p-dopants for poly(3-hexylthiophene) in sensing micro-arrays. Based on the nature of the salts, each material shows a dynamical pattern of polymer conductance modulation that is specific to the exposed solv ent vapors. By multivariate data analysis, we show that the two mildest ones used in an array can be trained to reliably discriminate the three gases, proving that integrating one single conducting polymer suffices to build the input layer of a resistive nose. Moreover, the study points out the existence of tripartite donor-acceptor charge-transfer complexes responsible for chemo-specific molecular sensing. By showing that molecular acceptors have duality to either p-dope and co ordinate volatile electron donors, such behavior can be used to unravel the role of frontier orbital overlapping in organic semiconductors and the formation of charge-transfer complexes in molecular semiconductors.
Boujnah A., Boubaker A., Kalboussi A., Lmimouni K., Pecqueur S.
Abstract: We have adapted a "peel-off" process to structure stacked organic semiconductors (conducting polymers or small molecules) and metal layers for diode microfabrication. The fabricated devices are organic diode rectifier in a coplanar waveguide structure. U nlike conventional lithographic process, this technique does not lead to destroy organic active layers since it does not involve harsh developer or any non-orthogonal solvent that alter the functionality of subsequentially deposited materials. This proce ss also involves recently reported materials, as a p-dopant of an organometallic electron acceptor Copper(II) trifluoromethanesulfonate, that play the role of hole injection layer in order to enhance the performances of the diode. Comparatively to self-a ssembled monolayers based optimized structures, the fabricated diodes show higher reproducibility and stability. High rectification ratio for realized pentacene and poly(3-hexylthiophene) diodes up to 10^6 has been achieved. Their high frequency response has been evaluated by performing theoretical simulations. The results predict operating frequencies of 200 MHz and 50 MHz for pentacene and P3HT diode rectifiers respectively, with an input oscillating voltage of 2 V peak-to-peak, promising for RFID dev ice applications or for GSM band energy harvesting in low-cost IoT objects.
Ferchichi K., Pecqueur S., Guérin D., Bourguiga R., Lmimouni K.
Abstract: Although materials and processes are different from biological cells', brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electr opolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites': fractal number, branching degr ee, asymmetry, density or length. Growths time-lapse image processing shows spatial features to be dynamically dependent, and expand distinctively before and after conductive bridging with two electro-generated dendrites. Circuit-element analysis and imp edance spectroscopy confirms their morphological control in temporal windows where growth kinetics is finely perturbed by the input frequency and duty cycle. By the emulation of one's most preponderant mechanisms for brain's long-term memory, its impleme ntation in vicinity of sensing arrays, neural probes or biochips shall greatly optimize computational costs and recognition required to classify high-dimensional patterns from complex environments.
Janzakova K., Kumar A., Ghazal M., Susloparova A., Coffinier Y., Alibart F., Pecqueur S.*
Abstract: Organic electrochemical transistors are considered today as a key technology to interact with a biological medium through their intrinsic ionic-electronic coupling. In this paper, the authors show how this coupling can be finely tuned (in operando) post- microfabrication via the electropolymerization technique. This strategy exploits the concept of adaptive sensing where both transconductance and impedance are tunable and can be modified on-demand to match different sensing requirements. Material investi gation through Raman spectroscopy, atomic force microscopy, and scanning electron microscopy reveals that electropolymerization can lead to a fine control of poly(3,4-ethylenedioxythiophene) (PEDOT) microdomains organization, which directly affects the i ono-electronic properties of organic electrochemical transistors (OECTs). They further highlight how volumetric capacitance and effective mobility of PEDOT:polystyrene sulfonate influence distinctively the transconductance and impedance of OECTs. This ap proach shows to improve the transconductance by 150% while reducing their variability by 60\% in comparison with standard spin-coated OECTs. Finally, they show how the technique can influence voltage spike rate hardware classification with direct interes t in bio-signals sorting applications.
Ghazal M., Daher Mansour M., Scholaert C., Dargent T., Coffinier Y., Pecqueur S.*, Alibart F.*
Abstract: One of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape. Gradual topologies evolution is demonstrated in a multielectrode configuration. A detailed electrical characterization of the PEDOT:PSS dendrites is conducted through DC and impedance spectroscopy measurements and it is shown how organic electrochemical transistors (OECT) can be re alized with these structures. These measurements reveal that quasi-static and transient response of OECTs can be adjusted by controlling dendrites' morphologies. The unique properties of organic dendrites are used to demonstrate short-term, long-term, an d structural plasticity, which are essential features required for future neuromorphic hardware development.},
Janzakova K., Ghazal M., Kumar A., Coffinier Y., Pecqueur S.*, Alibart F.*
Abstract: In this work, we demonstrate P3HT (poly 3-hexylthiophene) organic rectifier diode both in rigid and flexible substrate with a rectification ratio up to 106. This performance has been achieved through tuning the work function of gold with a self-assembled monolayer of 2,3,4,5,6-pentafluorobenzenethiol (PFBT). The diode fabricated on flexible paper substrate shows a very good electrical stability under bending tests and the frequency response is estimated at more than 20 MHz which is sufficient for radio frequency identification (RFID) applications. It is also shown that the low operating voltage of this diode can be a real advantage for use in a rectenna for energy harvesting systems. Simulations of the diode structure show that it can be used at GSM an d Wi-Fi frequencies if the diode capacitance is reduced to a few pF and its series resistance to a few hundred ohms. Under these conditions, the DC voltages generated by the rectenna can reach a value up to 1 V.
Ferchichi K.*, Pecqueur S., Guérin D., Bourguiga R., Lmimouni K.
Abstract: Organic semiconductors have enough molecular versatility to feature chemo-specific electrical sensitivity to large families of chemical substituents via different intermolecular bonding modes. This study demonstrates that one single conducting polymer ca n be tuned to either discriminate water-, ethanol- or acetone-vapors, on demand, by changing the nature of its dopant. Seven triflate salts differ from mild to strong p-dopant on poly(3-hexylthiophene) sensing micro-arrays. Each material shows a pattern of conductance modulation for the polymer which is reversible, reproducible, and distinctive of other gas exposures. Based on principal component analysis, an array doped with only two different triflates can be trained to reliably discriminate gases, wh ich re-motivates using conducting polymers as a class of materials for integrated electronic noses. More importantly, this method points out the existence of tripartite donor-acceptor charge-transfer complexes responsible for chemospecific molecular sens ing. By showing that molecular acceptors can have duality to p-dope semiconductors and to coordinate donor gases, such behavior can be used to understand the role of frontier orbital overlapping in organic semiconductors, the formation of charge-transfer complexes via Lewis acid-base adducts in molecular semiconductors.
Boujnah A., Boubaker A., Kalboussi A., Lmimouni K., Pecqueur S.*
Abstract: We have adapted a "peel-off" process to structure stacked organic semiconductors (conducting polymers or small molecules) and metal layers for diode microfabrication. The fabricated devices are organic diode rectifier in a coplanar waveguide structure. U nlike conventional lithographic process, this technique does not lead to destroy organic active layers since it does not involve harsh developer or any non-orthogonal solvent that alter the functionality of subsequentially deposited materials. This proce ss also involves recently reported materials, as a p-dopant of an organometallic electron-acceptor Copper (II) trifluoromethanesulfonate, that play the role of hole injection layer in order to enhance the performances of the diode. Comparatively to self- assembled monolayers based optimized structures, the fabricated diodes show higher reproducibility and stability. High rectification ratio for realized pentacene and poly (3-hexylthiophene) diodes up to 106 has been achieved. Their high frequency respons e has been evaluated by performing theoretical simulations. The results predict operating frequencies of 200 MHz and 50 MHz for pentacene and P3HT diode rectifiers respectively, with an input oscillating voltage of 2 V peak-to-peak, promising for RFID de vice applications or for GSM band energy harvesting in low-cost IoT objects.
Ferchichi K.*, Pecqueur S., Guérin D., Bourguiga R., Lmimouni K.
Abstract: Most of today's strategies to interface biology with electronic hardware are based on layered architectures where the front-end of sensing is optimized separately from the back-end for processing/computing signals. Alternatively, biological systems are c apitalizing on distributed architecture where both sensing and computing are mix together and co-optimized. In this talk, we will present our strategy to implement bio-sensing of electroactive cells in a neuromorphic perspective. We will present how orga nic electrochemical transistors can be used to record electrical signals from neural cells. We will show various strategies capitalizing on the versatility of organic materials synthesis and organic device fabrication to tune and adapt the functionalitie s of such bio-sensors. We will then present how these strategies can be efficiently used to realize computing functions directly at the interface with biology. Notably, we will illustrate how a network of ionic sensors can implement the reservoir computi ng concept, a powerful neuromorphic computing approach of particular interest for dynamical signal processing.
Alibart F., Ghazal M., Janzakova K., Kumar A., Susloparova A., Halliez S., Colin M., Buée L., Guérin D., Dargent T., Coffinier Y., Pecqueur S.
Abstract:
Ghazal M., Daher Mansour M., Halliez S., Coffinier Y., Dargent T., Pecqueur S., Alibart F.
© 2019-2025 Sébastien Pecqueur