Abstract: Neural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Biology uses neurogenesis and structural plasticity to solve this problem. Advanced neural network algorith ms are mostly relying on synaptic plasticity and learning. The main limitation in reconciling these two approaches is the lack of a viable hardware solution that could reproduce the bottom-up development of biological neural networks. Here, we show how t he dendritic growth of PEDOT:PSS-based fibers through AC electropolymerization can implement structural plasticity during network development. We find that this strategy follows Hebbian principles and is able to define topologies that leverage better com puting performances with sparse synaptic connectivity for solving non-trivial tasks. This approach is validated in software simulation, and offers up to 61% better network sparsity on classification and 50% in signal reconstruction tasks.
Janzakova K., Balafrej I., Kumar A., Garg N., Scholaert C., Rouat J., Drouin D., Coffinier Y., Pecqueur S., Alibart F.*
Abstract: Multivariate data analysis and machine-learning classification become popular tools to extract features without physical models for complex environments recognition. For electronic noses, time sampling over multiple sensing elements must be a fair compro mise between a period sufficiently long to output a meaningful information pattern, and sufficiently short to minimize training time for practical applications. Particularly when reactivity's kinetic differs from thermodynamic in sensitive materials, fin ding the best compromise to get the most from data is not obvious. Here, we investigate on the influence of data acquisition to improve or alter data clustering for molecular recognition on a conducting polymer electronic nose. We found out that waiting for sensing elements to reach their steady state is not required for classification, and that reducing data acquisition down to the first dynamical information suffice to recognize molecular gases by principal component analysis with the same materials. Especially for online inference, this study shows that a good sensing array is no array of good sensors, and that new figure-of-merits shall be defined for sensing hardware aiming machine-learning pattern-recognition rather than metrology.
Haj Ammar W., Boujnah A., Boubaker A., Kalboussi A., Lmimouni K., Pecqueur S.*
Abstract: In the quest to change the way we envision computing, the ability to create connections in between computing nodes on demand offers the very exciting possibility to explore bottom-up strategies when it comes to thinking the design of electronic devices a nd circuits. Recently, the growth of conductive polymer fibers via electropolymerization (most notably poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), abbreviated as PEDOT:PSS) was employed in the realm of neuromorphic hardware, first as a way to tune the resistance of a connection, and then to perform computing tasks, such as biosignal classification trough reservoir computing, thus establishing the advantages of the method. In this work, we propose to demonstrate that electropolyme rization is a useful tool for the creation of sensors that are able to realize computing tasks in an aqueous environment. By taking advantage of the morphology of the fibers, we show that PEDOT:PSS dendrites can discriminate between different types of vo ltage pulses emitted in their vicinity by a local gate electrode, thus performing in materio classification. In addition, we discuss the growth of networks of polymer fibers on 2D substrates. The ability to create structures that cover several microelect rodes allows us to study the behavior of the whole system instead of a single dendrite. Complex interactions through iono-electronic coupling arise when several fibers are interconnected. These mechanisms (e.g. self- / inter-gating, ionic relaxation,...) offer new possibilities for computing signals and could potentially open the way for new applications.
Scholaert C., Janzakova K., Coffinier Y., Pecqueur S., Alibart F.
Abstract: Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling. Herein, we investigate on electro-co-polymerization of EDOT with its triglymated derivative to control valence between monomer units and hydrophil ic functions on a conducting polymer. Molecular packing, cation complexation, dopant stoichiometry are governed by the glycolation degree of the electro-active coating of the microelectrodes. Optimal monomer ratio allows fine-tuning the material hydrophi licity and biocompatibility without compromising the electrochemical impedance of microelectrodes nor their stability while interfaced with a neural cell culture. After incubation, sensing readout on the modified electrodes shows higher performances with respect to unmodified electropolymerized PEDOT, with higher signal-to-noise ratio (SNR) and higher spike counts on the same neural culture. Reported SNR values are superior to that of state-of-theart PEDOT microelectrodes and close to that of state-of-t he-art 3D microelectrodes, with a reduced fabrication complexity. Thanks to this versatile technique and its impact on the surface chemistry of the microelectrode, we show that electro-co-polymerization trades with manycompound properties to easily gathe r them into single macromolecular structures. Applied on sensor arrays, it holds great potential for the customization of neurosensors to adapt to environmental boundaries and to optimize extracted sensing features.
Ghazal M., Susloparova A., Lefebvre C., Daher Mansour M., Ghodhbane N., Melot A., Scholaert C., Guérin D., Janel S., Barois N., Colin M., Buée L., Yger P., Halliez S., Coffinier Y.*, Pecqueur S.*, Alibart F.
Abstract: Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analy-sis can often be a mean to circumvent this and to extract more information when larger datasets are used with learning algorithms instead of physical models. Here, we report on identifying rele-vant information descriptors for organic electrochemical transistors (OECTs) to classify aqueous electrolytes by ionic composition. Applying periodical gate pulses at different voltage magnitudes, we extracted a reduced number of nonredundant descriptors from the rich drain-current dynam-ics, which provide enough information to cluster electrochemical data by principal component analysis between Ca2+-, K+-, and Na+-rich electrolytes. With six current values obtained at the ap-propriate time domain of the device charge/discharge transient, one can identify the cationic iden-tity of a locally probed transient current wit h only a single micrometric device. Applied to OECT-based neural sensors, this analysis demonstrates the capability for a single nonselective de-vice to retrieve the rich ionic identity of neural activity at the scale of each neuron individually when lea rning algorithms are applied to the device physics.
Pecqueur S.*, Vuillaume D., Crljen Ž., Lončarić I., Zlatić V.*
Abstract: Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the u se of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in com parison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.
Ghazal M., Scholaert C., Dumortier C., Lefebvre C., Barois N., Janel S., Çağatay Tarhan M., Colin M., Buée L., Halliez S., Pecqueur S., Coffinier Y., Alibart F.*, Yger P.*
© 2019-2025 Sébastien Pecqueur