frange
home research publications projects cv
bandeau
where email ORCID

76 Publications:

2013..

14

7

..2025

443 Citations*:

2015..

135

68

..2025

h = 12 / i10 = 16

96 Co-Authors:

Alibart F. (35)
Coffinier Y. (26)
Guérin D. (19)
Ghazal M. (18)
Lmimouni K. (16)
Janzakova K. (15)
Scholaert C. (13)
Vuillaume D. (13)
Kumar A. (12)
Halliez S. (11)
Schmid G. (11)
Dargent T. (8)
Buée L. (7)
Colin M. (7)
Susloparova A. (7)
Hafsi B. (6)
Bourguiga R. (6)
Ferchichi K. (6)
Maltenberger A. (6)
Baron A. (5)
Boubaker A. (5)
Boujnah A. (5)
Kalboussi A. (5)
Daher Mansour M. (5)
Routier L. (4)
Lefebvre C. (4)
Barois N. (4)
Janel S. (4)
Kessler F. (4)
Cerveaux A. (3)
Foulon P. (3)
Horlac'h T. (3)
Louis G. (3)
Westrelin A. (3)
Yger P. (3)
Crljen Ž. (3)
Lončarić I. (3)
Zlatić V. (3)
Lenfant S. (3)
Regensburger S. (3)
>> Halik M. (3)
Benfenati V. (3)
Bonetti S. (3)
Borrachero Conejo A. I. (3)
Generali G. (3)
Muccini M. (3)
Toffanin S. (3)
Toledo Nauto M. (2)
Hernández-Balaguera E. (2)
Balafrej I. (2)
Drouin D. (2)
Rouat J. (2)
Garg N. (2)
Haj Ammar W. (2)
Çağatay Tarhan M. (2)
Pentlehner D. (2)
Caprini M. (2)
Grishin I. (2)
Karges S. (2)
Natali M. (2)
Pistone A. (2)
Quiroga S. D. (2)
Wemken J. H. (2)
Gasse C. (1)
Gourdel M.-E. (1)
Kanso H. (1)
Kenne S. (1)
Le Cacher de Bonneville B. (1)
Morchain C. (1)
Rain J.-C. (1)
Reverdy C. (1)
Saadi P.-L. (1)
Vercoutere E. (1)
Moustiez P. (1)
Dumortier C. (1)
Ghodhbane N. (1)
Melot A. (1)
de Maistre A. (1)
Oumekloul Z. (1)
Pernod P. (1)
Talbi A. (1)
Arscott S. (1)
Begard S. (1)
Pallecchi E. (1)
Thomy V. (1)
Athanasiou V. (1)
Konkoli Z. (1)
Przyczyna D. (1)
Szaciłowski K. (1)
Blanchard P. (1)
Mastropasqua Talamo M. (1)
Roncali J. (1)
Jaeger A. (1)
Petrukhina M. A. (1)
Mercuri F. (1)
Kanitz A. (1)

3 Years [Halik M.]:

2025
2024
2023
2022
2021
2020
2019
2018
2017
2016 (1)
2015
2014 (1)
2013 (1)

A' B' O' P' T'
3 w/ Marcus Halik
 id g pu
[A1/A1'] Wide Band-Gap Bismuth-based p-Dopants for Opto-Electronic Applications | Angew. Chem. Int. Ed. 55(35), 10493━10497 (2016) Bismut-haltige p-Dotanden mit großer Bandlücke für optoelektronische Anwendungen | Angew. Chem. 128(35), 10649-10653 (2016) [IF2016 = 11.994; 13 cit.] bib

Abstract: Ten new efficient p-dopants for conductivity doping of organic semiconductors for OLEDs are identified. The key advantage of the electrophilic tris(carboxylato) bismuth(III) compounds is the unique low absorption of the resulting doped layers which promo tes the efficiency of OLED devices. The combination of these features with their low fabrication cost, volatility, and stability, make these materials very attractive as dopants in organic electronics.

2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016

Pecqueur S., Maltenberger A., Petrukhina M. A., Halik M., Jaeger A., Pentlehner D., Schmid G.*

[O1] Differentiation between Redox Chemistry and Lewis Acid/Base Model in Organic Semiconductor Doping | 6th Int'l Symposium on Technologies for Polymer Electronics (TPE14), Illmenau/Germany - Dec. 20, 2014 ( program) bib

Abstract:

Schmid G., Pecqueur S., Halik M.

[P1] Differentiation between Redox Chemistry and Lewis Acid/Base Model in Organic Semiconductor Doping | 9th Plastic Electronics Conf. & Exhibit 2013 (PE2013), Dresden/Germany - Oct. 8, 2013 bib

Abstract: Organic electronic is up to now the most promising technology in order to realize opto electronic devices suitable on flexible substrates, which can open new markets on plastic-based products. Nevertheless, to compete classic technologies on already exis ting markets, organic electronic needs to improve several of its electrical performances among others. Doping organic semiconductors is one strategy to optimize electrical conductivity on organic materials but is still very limiting compared to inorganic , and understanding the complex mechanism between dopant and organic semiconductor is a prerequisite for their optimization. Even if the experience shows classic dopants to be redox-active chemicals (Cs, Li, O2), the redox activity of some che micals is no prerequisite for doping. Despite its strong reducing property, Cr2(tfa)4 has been demonstrated to be a p-dopant for its Lewis acidity. Cr2(tfa)4 presents an air-sensitivity due to the redox-activit y of the core, which implies that the conception of Lewis acids and bases, stable under oxidizing or reducing conditions,can result in potential air-stable materials which would dope organic semiconductors by the formation of hybrid charge-transfer compl exes.

Pecqueur S., Halik M., Schmid G.

© 2019-2025 Sébastien Pecqueur