frange
home research publications projects cv
bandeau
where email ORCID

76 Publications:

2013..

14

7

..2025

443 Citations*:

2015..

135

68

..2025

h = 12 / i10 = 16

96 Co-Authors:

Alibart F. (35)
Coffinier Y. (26)
Guérin D. (19)
Ghazal M. (18)
Lmimouni K. (16)
Janzakova K. (15)
Scholaert C. (13)
Vuillaume D. (13)
Kumar A. (12)
Halliez S. (11)
Schmid G. (11)
Dargent T. (8)
Buée L. (7)
Colin M. (7)
Susloparova A. (7)
Hafsi B. (6)
Bourguiga R. (6)
Ferchichi K. (6)
Maltenberger A. (6)
Baron A. (5)
Boubaker A. (5)
Boujnah A. (5)
Kalboussi A. (5)
Daher Mansour M. (5)
Routier L. (4)
Lefebvre C. (4)
Barois N. (4)
Janel S. (4)
Kessler F. (4)
Cerveaux A. (3)
Foulon P. (3)
Horlac'h T. (3)
Louis G. (3)
Westrelin A. (3)
Yger P. (3)
Crljen Ž. (3)
Lončarić I. (3)
Zlatić V. (3)
Lenfant S. (3)
Regensburger S. (3)
Halik M. (3)
Benfenati V. (3)
Bonetti S. (3)
Borrachero Conejo A. I. (3)
Generali G. (3)
Muccini M. (3)
Toffanin S. (3)
Toledo Nauto M. (2)
Hernández-Balaguera E. (2)
Balafrej I. (2)
Drouin D. (2)
Rouat J. (2)
Garg N. (2)
Haj Ammar W. (2)
Çağatay Tarhan M. (2)
Pentlehner D. (2)
Caprini M. (2)
Grishin I. (2)
Karges S. (2)
Natali M. (2)
Pistone A. (2)
Quiroga S. D. (2)
Wemken J. H. (2)
Gasse C. (1)
Gourdel M.-E. (1)
Kanso H. (1)
Kenne S. (1)
Le Cacher de Bonneville B. (1)
Morchain C. (1)
Rain J.-C. (1)
Reverdy C. (1)
Saadi P.-L. (1)
Vercoutere E. (1)
Moustiez P. (1)
Dumortier C. (1)
Ghodhbane N. (1)
Melot A. (1)
de Maistre A. (1)
Oumekloul Z. (1)
Pernod P. (1)
Talbi A. (1)
Arscott S. (1)
Begard S. (1)
Pallecchi E. (1)
Thomy V. (1)
Athanasiou V. (1)
Konkoli Z. (1)
Przyczyna D. (1)
Szaciłowski K. (1)
Blanchard P. (1)
>> Mastropasqua Talamo M. (1)
Roncali J. (1)
Jaeger A. (1)
Petrukhina M. A. (1)
Mercuri F. (1)
Kanitz A. (1)

1 Years [Mastropasqua Talamo M.]:

2025
2024
2023
2022
2021
2020
2019
2018 (1)
2017
2016
2015
2014
2013

A' B' O' P' T'
1 w/ Maurizio Mastropasqua Talamo
 id pu
[A4] Neuromorphic time-dependent pattern classification with organic electrochemical transistor arrays | Adv. Electron. Mater. 4(9), 1800166 (2018) [IF2018 = 6.312; 65 cit.] bib arXiv hal

Abstract: Based on bottom-up assembly of highly variable neural cells units, the nervous system can reach unequalled level of performances with respect to standard materials and devices used in microelectronic. Reproducing these basic concepts in hardware could po tentially revolutionize materials and device engineering which are used for information processing. Here, an innovative approach that relies on both iono-electronic materials and intrinsic device physics to show pattern classification out of a 12-unit bi osensing array is presented. The reservoir computing and learning concept to demonstrate relevant computing based on the ionic dynamics in 400 nm channel-length organic electrochemical transistor is used. It is shown that this approach copes efficiently with the high level of variability obtained by bottom-up fabrication using a new electropolymerizable polymer, which enables iono-electronic device functionality and material stability in the electrolyte. The effect of the array size and variability on t he performances for a real-time classification task paving the way to new embedded sensing and processing approaches is investigated.

2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018

Pecqueur S.*, Mastropasqua Talamo M., Guérin D., Blanchard P., Roncali J., Vuillaume D., Alibart F.*

© 2019-2025 Sébastien Pecqueur