frange
home research publications projects cv
bandeau
where email ORCID

76 Publications:

2013..

14

7

..2025

443 Citations*:

2015..

135

68

..2025

h = 12 / i10 = 16

96 Co-Authors:

Alibart F. (35)
Coffinier Y. (26)
Guérin D. (19)
Ghazal M. (18)
Lmimouni K. (16)
Janzakova K. (15)
Scholaert C. (13)
Vuillaume D. (13)
Kumar A. (12)
Halliez S. (11)
Schmid G. (11)
Dargent T. (8)
Buée L. (7)
Colin M. (7)
Susloparova A. (7)
Hafsi B. (6)
Bourguiga R. (6)
Ferchichi K. (6)
Maltenberger A. (6)
Baron A. (5)
Boubaker A. (5)
Boujnah A. (5)
Kalboussi A. (5)
Daher Mansour M. (5)
Routier L. (4)
Lefebvre C. (4)
Barois N. (4)
Janel S. (4)
Kessler F. (4)
Cerveaux A. (3)
Foulon P. (3)
Horlac'h T. (3)
Louis G. (3)
>> Westrelin A. (3)
Yger P. (3)
Crljen Ž. (3)
Lončarić I. (3)
Zlatić V. (3)
Lenfant S. (3)
Regensburger S. (3)
Halik M. (3)
Benfenati V. (3)
Bonetti S. (3)
Borrachero Conejo A. I. (3)
Generali G. (3)
Muccini M. (3)
Toffanin S. (3)
Toledo Nauto M. (2)
Hernández-Balaguera E. (2)
Balafrej I. (2)
Drouin D. (2)
Rouat J. (2)
Garg N. (2)
Haj Ammar W. (2)
Çağatay Tarhan M. (2)
Pentlehner D. (2)
Caprini M. (2)
Grishin I. (2)
Karges S. (2)
Natali M. (2)
Pistone A. (2)
Quiroga S. D. (2)
Wemken J. H. (2)
Gasse C. (1)
Gourdel M.-E. (1)
Kanso H. (1)
Kenne S. (1)
Le Cacher de Bonneville B. (1)
Morchain C. (1)
Rain J.-C. (1)
Reverdy C. (1)
Saadi P.-L. (1)
Vercoutere E. (1)
Moustiez P. (1)
Dumortier C. (1)
Ghodhbane N. (1)
Melot A. (1)
de Maistre A. (1)
Oumekloul Z. (1)
Pernod P. (1)
Talbi A. (1)
Arscott S. (1)
Begard S. (1)
Pallecchi E. (1)
Thomy V. (1)
Athanasiou V. (1)
Konkoli Z. (1)
Przyczyna D. (1)
Szaciłowski K. (1)
Blanchard P. (1)
Mastropasqua Talamo M. (1)
Roncali J. (1)
Jaeger A. (1)
Petrukhina M. A. (1)
Mercuri F. (1)
Kanitz A. (1)

1 Years [Westrelin A.]:

2025
2024 (3)
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013

A' B' O' P' T'
3 w/ Alexandre Westrelin
RG
[O26] Portable Multiplexed System Based AD5933 Impedance analyzer: Towards Multi-Selective Gas Recognition | 2024 IEEE 23rd IEEE Conference on Sensors (IEEE-Sensors 2024), talk 6544, Kobe/Japan - Oct. 21, 2024 ( program) bib

Abstract: Advances on System-On-Chip and organic sensors allows the development of miniaturized impedance measurement hardware for gas monitoring in IoT. In this work, we present the development of miniaturized, multiplexed, and connected platform for impedance sp ectroscopy. Designed for online measurements and adapted to wireless network architectures, our platform has been tested and optimized to be used for multi-selective chemical organic sensor nodes. Our designed circuit is built from low cost and low power consumption microelectronics components providing real time acquisition. The proposed system is based on ESP32 Microcontroller enabling the management of an impedance network analyzer AD5933 (Analog Devices, Norwood, MA, USA) through its I2C interface. Our system benefits from two multiplexer components allowing calibration process and the interface of 15 conductimetric sensors with fast acquisition (less than 90 ms per acquisition). The paper describes the microelectronics design, the impedance respon se over time, the measurement's sensitivity and accuracy and the testing of the platform with embedded chemical sensors for gas classification and recognition.

Routier L., Westrelin A., Cerveaux A., Foulon P., Louis G., Horlac'h T., Lmimouni K., Pecqueur S., Hafsi B.

[A28] Single-Point Calibration Process Based Integrated Electrical Impedance Analyzer For Multi-Selective Gas Detection | Discov. Appl. Sci. 6, 403 (2024) [IF = 2.800 ] bib hal

Abstract: Advances on System-On-Chip and organic sensors allows the development of miniaturized impedance measurement hardware for gas monitoring in IoT. In this work, we present the development of miniaturized, multiplexed, and connected platform for impedance sp ectroscopy. Designed for online measurements and adapted to wireless network architectures, our platform has been tested and optimized to be used for multi-selective chemical organic sensor nodes. Our designed circuit is built from low cost and low power consumption (250 mW) microelectronics components that achieve long duration operability (5 days and 16 HRS) without compromising on sensor measurement accuracy and precision. We used the well-known impedance network analyzer AD5933 (Analog Devices, Norw ood, MA, USA) chip which can measure a spectrum of impedances in the range 5 Hz to 100 kHz. The proposed system is based on ESP32-C3 Microcontroller enabling the management of the AD5933 through its I2C interface. Our system benefits from two multiplexer components CD74HC4067 allowing calibration process and the interface of 15 conductimetric sensors with real time acquisition (less than 90 ms per acquisition). The system is capable of relaying information through the network for data analysis and stora ge. The paper describes the microelectronics design, the impedance response over time, the measurement's sensitivity and accuracy and the testing of the platform with embedded chemical sensors for gas classification and recognition.

Routier L., Westrelin A., Cerveaux A., Louis G., Horlac'h T., Foulon P., Lmimouni K., Pecqueur S., Hafsi B.*

[A27] Portable Multiplexed System-Based AD5933 Impedance Analyzer: Toward Multiselective Gas Recognition | IEEE Sens. Lett. 8(7), 5502304 (2024) [IF = 2.200; 2 cit.] bib

Abstract: Advances on System-On-Chip and organic sensors allows the development of miniaturized impedance measurement hardware for gas monitoring in IoT. In this work, we present the development of miniaturized, multiplexed, and connected platform for impedance sp ectroscopy. Designed for online measurements and adapted to wireless network architectures, our platform has been tested and optimized to be used for multi-selective chemical organic sensor nodes. Our designed circuit is built from low cost and low power consumption microelectronics components providing real time acquisition. The proposed system is based on ESP32 Microcontroller enabling the management of an impedance network analyzer AD5933 (Analog Devices, Norwood, MA, USA) through its I2C interface. Our system benefits from two multiplexer components allowing calibration process and the interface of 15 conductimetric sensors with fast acquisition (less than 90 ms per acquisition). The paper describes the microelectronics design, the impedance respon se over time, the measurement's sensitivity and accuracy and the testing of the platform with embedded chemical sensors for gas classification and recognition.

2025 | 2024

Routier L., Westrelin A., Cerveaux A., Foulon P., Louis G., Horlac'h T., Lmimouni K., Pecqueur S., Hafsi B.*

© 2019-2025 Sébastien Pecqueur