frange
home research publications projects cv
bandeau
where email ORCID

76 Publications:

2013..

14

7

..2025

443 Citations*:

2015..

135

68

..2025

h = 12 / i10 = 16

96 Co-Authors:

Alibart F. (35)
Coffinier Y. (26)
Guérin D. (19)
Ghazal M. (18)
Lmimouni K. (16)
Janzakova K. (15)
Scholaert C. (13)
Vuillaume D. (13)
Kumar A. (12)
Halliez S. (11)
Schmid G. (11)
Dargent T. (8)
Buée L. (7)
Colin M. (7)
Susloparova A. (7)
Hafsi B. (6)
Bourguiga R. (6)
Ferchichi K. (6)
Maltenberger A. (6)
Baron A. (5)
Boubaker A. (5)
Boujnah A. (5)
Kalboussi A. (5)
Daher Mansour M. (5)
Routier L. (4)
Lefebvre C. (4)
Barois N. (4)
Janel S. (4)
Kessler F. (4)
Cerveaux A. (3)
Foulon P. (3)
Horlac'h T. (3)
Louis G. (3)
Westrelin A. (3)
Yger P. (3)
Crljen Ž. (3)
Lončarić I. (3)
Zlatić V. (3)
Lenfant S. (3)
Regensburger S. (3)
Halik M. (3)
Benfenati V. (3)
Bonetti S. (3)
Borrachero Conejo A. I. (3)
Generali G. (3)
Muccini M. (3)
Toffanin S. (3)
Toledo Nauto M. (2)
Hernández-Balaguera E. (2)
Balafrej I. (2)
Drouin D. (2)
Rouat J. (2)
Garg N. (2)
Haj Ammar W. (2)
Çağatay Tarhan M. (2)
Pentlehner D. (2)
Caprini M. (2)
Grishin I. (2)
Karges S. (2)
Natali M. (2)
Pistone A. (2)
Quiroga S. D. (2)
Wemken J. H. (2)
Gasse C. (1)
Gourdel M.-E. (1)
Kanso H. (1)
Kenne S. (1)
Le Cacher de Bonneville B. (1)
Morchain C. (1)
Rain J.-C. (1)
Reverdy C. (1)
Saadi P.-L. (1)
Vercoutere E. (1)
>> Moustiez P. (1)
Dumortier C. (1)
Ghodhbane N. (1)
Melot A. (1)
de Maistre A. (1)
Oumekloul Z. (1)
Pernod P. (1)
Talbi A. (1)
Arscott S. (1)
Begard S. (1)
Pallecchi E. (1)
Thomy V. (1)
Athanasiou V. (1)
Konkoli Z. (1)
Przyczyna D. (1)
Szaciłowski K. (1)
Blanchard P. (1)
Mastropasqua Talamo M. (1)
Roncali J. (1)
Jaeger A. (1)
Petrukhina M. A. (1)
Mercuri F. (1)
Kanitz A. (1)

1 Years [Moustiez P.]:

2025
2024 (1)
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013

A' B' O' P' T'
1 w/ Paul Moustiez
 id RG
[O25] Transience and Disorder of Organic Semiconductors for Future-Emerging Sensing | Neuromorphic Organic Device 2024 workshop (NOD2024), invited, Paris/France - Oct. 9, 2024 ( program) bib

Abstract: Contributions of organic semiconducting materials to electronics are particularly hard to assess: As macromolecular organizations, they have low enthalpy so they can be processed in soft conditions and they have resilience to deformation. However, for th e same reason, they have also broader density of energy states and more instabilities than silicon in ambient. Controlling matter's order at low scale and its properties for as long as possible were always golden standards for microelectronics. Neverthel ess, in a time where brain functioning rises even more as a source of inspiration, shall it still be so? Here are presented clues on how physical property dispersions may be relevant features for information generator nodes to recognize patterns. In a co ntext where the information to recognize is not trivial to physically define, no model can rule sensors' classification a priori. Despite this, broadening the conducting polymer temporal responses in a sensing array allows recognizing dynamical voltage p atterns, or broadening conducting polymer's chemistry in a sensing array enlarges a classifier's perception field to recognize solvent vapors in air. By the nature of property dispersions in regards to the information to recognize, physical variabilities (structural and chemical) can be assets to exploit for pattern recognition and not necessarily drawbacks to bypass for hardware manufacturing. The brain architecture is also transient: a part of the processed information is engraved in its topology, sho wing that a hardware classifier can make use of physical instabilities as part of its programing, by forming new connections in a nodal architecture. Some evidences are also presented here, on how dendritic morphogenesis of a conducting polymer can be a mean to store past voltage experiences in the impedance between nodes in a topology. Very distinct electrochemical features appear in the readout impedance information after growth and these features are to be associated with the shape of a voltage wave inputted on the junction. By the physical implementation of materials' disorder and transience in electronics devices, it is expected that organic semiconductors will integrate essential ingredients in future-emerging information generator nodes beyond s ensors: from embedded random information generating resources to evolving abilities in information classification architectures.

Pecqueur S., Baron A., Scholaert C., Toledo Nauto M., Moustiez P., Routier L., Guérin D., Lmimouni K., Coffinier Y., Hafsi B., Alibart F.

© 2019-2025 Sébastien Pecqueur